467 research outputs found

    Adsorption properties of hydrazine on pristine and Si-doped Al₁₂N₁₂ nano-cage

    Get PDF
    The interaction of hydrazine (N₂H₄) molecule with pristine and Si-doped aluminum nitride (Al₁₂N₁₂) nano-cage was investigated using the density functional theory calculations. The adsorption energy of N₂H₄ on pristine Al₁₂N₁₂ in different configurations was about -1.67 and -1.64 eV with slight changes in its electronic structure. The results showed that the pristine nano-cage can be used as a chemical adsorbent for toxic hydrazine in nature. Compared with very low sensitivity between N₂H₄ and Al₁₂N₁₂ nano-cage, N₂H₄ molecule exhibits high sensitivity toward Si-doped Al₁₂N₁₂ nano-cage so that the energy gap of the Si-doped Al₁₂N₁₂ nano-cage is changed by about 31.86 and 37.61 for different configurations in the SiAlmodel and by about 26.10 in the SiNmodel after the adsorption process. On the other hand, in comparison with the SiAlmodel, the adsorption energy of N₂H₄ on the SiNmodel is less than that on the SiALmodel to hinder the recovery of the nano-cage. As a result, the SiNAl₁₂N₁₁ is anticipated to be a potential novel sensor for detecting the presence of N₂H₄ molecule. © 2016 Taylor & Francis Group, LLC

    Studies on knot placement techniques for the geometry construction and the accurate simulation of isogeometric spatial curved beams

    Get PDF
    The present paper investigates the use of different knot placement techniques for isogeometric analysis of spatial curved beams, to enhance analysis results in cases when geometries are given in terms of data points. Focusing on analysis-aware modeling for structural static and vibration simulations of spatial free-form curved beams, the knot placement techniques based on uniformly spaced knots as well as on De Boor’s and Piegl and Tiller’s algorithms are studied. For this purpose, an isogeometric formulation for linear Euler–Bernoulli beams based on the Euler–Rodriguez transformation rule is implemented. Different case studies and numerical examples are presented and the results are validated against “overkill” solutions computed with a commercial finite element software. The results show that the De Boor’s knot placement algorithm typically leads to better approximation errors and is therefore the suggested strategy for this kind of problems

    Wavefront-guided laser-assisted subepithelial keratectomy in low myopia, myopic astigmatism and high myopia

    Get PDF
    AIM: To compare the safety, efficacy, predictability, stability and complications of wavefront-guided laser-assisted subepithelial keratectomy (LASEK) in low myopia, myopic astigmatism and high myopia correction. METHODS: A retrospective analysis of 416 eyes were assigned to 3 groups: 159 eyes with low myopia (LM) and mean refractive spherical equivalent (MRSE) of -3.68±1.33 dioptre (D); 161 eyes with myopic astigmatism (MA) and MRSE of -5.99±2.24D and mean cylinder of 2.41±1.07D; and 96 eyes with high myopia (HM) and MRSE of -7.41±0.80D. After an epithelial flap creation, a wavefront-based excimer laser ablation was performed. Safety, efficacy, predictability and stability were evaluated at day 10, 2, 6 and 12mo postoperatively. RESULTS: At 12mo, the MRSE was -0.36±0.31D in LM group, 0.15±0.41D in MA group and 0.58±0.68D in HM group. The uncorrected visual acuity (UCVA) was 20/20 in 90.60 of patients in LM group, 78.90 in MA group and 67 in HM group. Efficacy indices were 0.98, 1.04 and 0.92 in LM, MA and HM groups, respectively. Safety indices were 1.00, 1.07 and 1.05 in LM, MA and HM respectively. Five eyes (3.1) in the LM group gained 1 line. Forty-four eyes (27.3) in MA gained 1-3 lines and eighteen eyes (19.2) of HM group gained 1-2 lines of BSCVA. Only 2 eyes in LM group developed corneal haze. There were not statistically significant differences in efficacy and safety indices amongst three groups. CONCLUSION: Wavefront-guided LASEK is an effective and safe procedure for the treatment of LM, MA, and HM.although in myopic astigmatism the predictability, efficacy and safety indices had been better. ©, 2015, International Journal of Ophthalmology (c/o Editorial Office). All right reserved

    Numerical Investigation of Wet Inflow in Steam Turbine Cascades Using NURBS-based Mesh Generation Method

    Get PDF
    In this paper, the impact of existence of wetness in the inflow of stationary cascades of steam turbine blades has been numerically investigated. A new mesh generation method based on non-uniform rational B-splines (NURBS) has been adopted to reduce the numerical error of the wet inflow simulation. Moreover, two common meshing scenarios namely blade-to-blade (B-B) and periodic-to-periodic boundary (P-P) are studied and different angle of the grid at the trailing edge have been considered. The classical nucleation theory corrected by Courtney–Kantrowitz model and the Young's droplet growth model are employed to simulate the condensation phenomenon. By validating against experimental data, the results showed that implementing the proposed NURBS-based meshing technique decreased the prediction errors of static pressure distribution and droplet average radius by 35.64% and 78.44%, respectively, in comparison to typical grid generation methods. In addition, it was observed that existence of wetness at inlet significantly decreased the supercooling degree and postponed the nucleation process. Thus, the nucleation rate could be ameliorated in the case when we have a specific amount of wetness fraction in the inflow

    Reparameterization of ruled surfaces: toward generating smooth jerk-minimized toolpaths for multi-axis flank CNC milling

    Get PDF
    This paper presents a novel jerk minimization algorithm in the context of multi-axis flank CNC machining. The toolpath of the milling axis in a flank milling process, a ruled surface, is reparameterized by a B-spline function, whose control points and knot vector are unknowns in an optimization-based framework. The total jerk of the tool's motion is minimized, implying the tool is moving as smooth as possible, without changing the geometry of the given toolpath. Our initialization stage stems from measuring the ruling distance metric (RDM) of the ruled surface. We show on several examples that this initialization reliably finds close initial guesses of jerk-minimizers and is also computationally efficient. The applicability of the presented approach is illustrated by some practical case studies.RYC-2017-2264

    On the application of isogeometric finite volume method in numerical analysis of wet-steam flow through turbine cascades

    Get PDF
    The isogeometric finite volume analysis is utilized in this research to numerically simulate the two-dimensional viscous wet-steam flow between stationary cascades of a steam turbine for the first time. In this approach, the analysis-suitable computational mesh with ‘‘curved’’ boundaries is generated for the fluid flow by employing a non- uniform rational B-spline (NURBS) surface that describes the cascade geometry, and the governing equations are then discretized by the NURBS representation. Thanks to smooth and accurate geometry representation of the NURBS formulation, the employed isogeometric framework not only resolves issues concerning the conventional mesh generation techniques of the finite volume method in steam turbine problems, but also, as validated against well-established experiments, significantly improves the accuracy of the numerical solution. In addition, the shock location in the cascade is predicted and tracked with a sufficient accuracy

    A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades

    Get PDF
    This paper proposes to use a blackbox optimization to obtain the optimal volumetric heating required to reduce the wetness at the last stages of steam turbines. For this purpose, a global multiobjective optimization is utilized through the automatic linking of genetic algorithm and CFD code, where the blackbox function evaluations are performed by CFD runs. The logarithm of number of droplets per volume (LND), the droplet average radius (DAR), and the integral of local entropy (ILE) at the end of the cascade (after the condensation location) are minimized, while the volumetric heating rate is the optimization parameter. The Eulerian–Eulerian approach is implemented to model the two-phase wet steam turbulent flow and the numerical results are validated against well-established experiments. Since higher volumetric heating rates reduce DAR and LND, while increase ILE, according to optimization results, there is an optimum for the volumetric heating rate to reach the best performance of steam turbines. For case studies presented in this work, the optimal volumetric heating rates of 5.21x10^8 and 4.67x10^8 W/m^2 are obtained for two different cases of supersonic and subsonic outlets, respectively. Particularly, these rates improve DAR by 45.7% and 57.5%, and LND by 6.0% and 7.8% for respective cases

    Refined isogeometric analysis for generalized Hermitian eigenproblems

    Get PDF
    We use refined isogeometric analysis (rIGA) to solve generalized Hermitian eigenproblems (Ku = λMu). rIGA conserves the desirable properties of maximum-continuity isogeometric analysis (IGA) while it reduces the solution cost by adding zero-continuity basis functions, which decrease the matrix connectivity. As a result, rIGA enriches the approximation space and reduces the interconnection between degrees of freedom. We compare computational costs of rIGA versus those of IGA when employing a Lanczos eigensolver with a shift-and-invert spectral transformation. When all eigenpairs within a given interval [λ_s,λ_e] are of interest, we select several shifts σ_k ∈ [λ_s,λ_e] using a spectrum slicing technique. For each shift σ_k, the factorization cost of the spectral transformation matrix K − σ_k M controls the total computational cost of the eigensolution. Several multiplications of the operator matrix (K − σ_k M)^−1 M by vectors follow this factorization. Let p be the polynomial degree of the basis functions and assume that IGA has maximum continuity of p−1. When using rIGA, we introduce C^0 separators at certain element interfaces to minimize the factorization cost. For this setup, our theoretical estimates predict computational savings to compute a fixed number of eigenpairs of up to O(p^2) in the asymptotic regime, that is, large problem sizes. Yet, our numerical tests show that for moderate-size eigenproblems, the total observed computational cost reduction is O(p). In addition, rIGA improves the accuracy of every eigenpair of the first N_0 eigenvalues and eigenfunctions, where N_0 is the total number of modes of the original maximum-continuity IGA discretization

    Effects of parameterization and knot placement techniques on primal and mixed isogeometric collocation formulations of spatial shear-deformable beams with varying curvature and torsion

    Get PDF
    We present a displacement-based and a mixed isogeometric collocation (IGA-C) formulation for free-form, three-dimensional, shear-deformable beams with high and rapidly-varying curvature and torsion. When such complex shapes are concerned, the approach used to build the IGA geometric model becomes relevant. Although IGA-C has been so far successfully applied to a wide range of problems, the effects that different parameterization and knot placement techniques may have on the accuracy of collocation-based formulations is still an unexplored field. To fill this gap, primal and mixed formulations are used combining two parameterization methods (chord-length and equally spaced) with two knot placement techniques (uniformly spaced and De Boor). With respect to the space-varying Frenet local frame, we derive the strong form of the governing equations in a compact form through the definition of two matrix operators conveniently used to perform first and second order derivatives of the vector fields involved in the formulations. This approach is very efficient and easy to implement within a collocation-based scheme. Several challenging numerical experiments allow to test the different considered parameterizations and knot placement techniques, revealing in particular that with the primal formulation an equally spaced parameterization is definitively the most recommended choice and it should always be used with an approximation degree of, at least, , although some caution must be adopted when very high Jacobians and small curvatures occur. The same holds for the mixed formulation, with the difference that is enough to yield accurate results

    Structure of macrobenthic invertebrate population in the southern coast of Caspian Sea for fish cage culture establishment

    Get PDF
    This research in line with fish cage culture plan in the southern coast of the Caspian Sea was carried out. Sampling was seasonally in 8 transects at the depth of 5-100 m from Astara to Torkaman areas in 2008-2009. The aim of this study was to investigate the distribution, abundance and biomass of macrobenthic invertebrate. The highest abundance and biomass were found in transects of Amirabad with average 10931.7±7301.4N/m2 and Astara with mean 86.2±160.3g/m2, respectively. This could be due to the presence of alien species into the Caspian Sea, Streblospio gynobranchiata in 2003 and is the dominant population of macrobenthic invertebrate concern up to 58.4% and increased of S. gynobranchiata (high power compatibility) and mussels of Cerastoderma glaucum (large size) is relevant, respectively. The abundance and biomass have fluctuations in different seasons and the highest abundance with average 6280.1±5693.1N/m2 and biomass with mean 66.1±126.9g/m2 was in winter and spring, respectively. A significant difference between abundance and transects (p0.05), significant difference between biomass and depth (p0.05) were found. Also, according to multivariate analysis of benthic invertebrate on the abundance at various depths revealed that depths of 5, 10 and 20 meters from the importance of certain fisheries in terms of frequency, abundance and biomass of the macrobenthic invertebrate, slope substrate, substrate, close to the beach, the accumulation of nutrients, Nursery ground, feeding ground and Spawning ground is important for different important species in the Caspian Sea. Therefore, the establishment of fish cage culture was recommended more than 20-meter depths according to the plans of fish cage culture in the southern coast of the Caspian Sea of the Iranian Fisheries Organization
    • 

    corecore